Bac million has

(Pages:4)

Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Core Course X

MM 1642 : COMPLEX ANALYSIS - II

(2021 Admission)

Time: 3 Hours

Max. Marks: 80

T - 1607

SECTION - I

Answer all questions.

- 1. State Morera's theorem.
- 2. State generalized Cauchy's integral formula.
- 3. Evaluate $\int_{|z|=4} \frac{1}{z-2} dz$.
- 4. Define uniform convergence in sequence.
- 5. Find $\sum_{j=0}^{\infty} \left(\frac{1}{3}\right)^j$.

- 6. Using the ratio test, show that $\sum_{j=0}^{\infty} \frac{j^2}{4^j}$ converges
- 7. Find the Maclaurin's series for sinz.
- 8. Find the singularities of $f(z) = \frac{\cos z}{z^2 (z-\pi)^3}$.
- 9. Define pole. Give an example.
- 10. Find the poles of $f(z) = \frac{z^2}{z^2 + 4}$.

SECTION - II

 $(10 \times 1 = 10 \text{ Marks})$

Answer any eight questions.

11. Compute $\int_{|z|=1} \frac{e^{5z}}{z^3} dz.$

12. Show that
$$\int_{|z|=3} \frac{e^2}{z-2} dz = 2\pi i e^2$$
.

- 13. Find $\int_C \frac{dz}{z-1}$ where C is the circle |z| = 3.
- 14. Show that $1 c c^2 + ... = \frac{1}{1 c}$, if |c| < 1.
- 15. If $\sum_{j=0}^{r} c_j$ sums to S and λ is any complex number then show that $\sum_{j=0}^{\infty} \lambda c_j$ sums to λ S.

- 16. Prove that $\lim_{n \to \infty} (n!)^{\frac{1}{n}} = \infty$.
- 17. Expand $e^{\frac{1}{z}}$ in a Laurent series around z = 0.
- 18. Find the residue of f(z) tanz at $z = \frac{\pi}{2}$.
- 19. Find the residue at z = 0 of $f(z) = \frac{5z-2}{z(z-1)}$.
- 20. Determine the order of each pole and the value of residue there for $f(z) = \frac{1 e^{2z}}{z^4}$.
- 21. Prove that $\lim_{n \to \infty} (n!)^{\frac{1}{n}} = \infty$.
- 22. Find the Maclaurin series expansion of sinhz.

Answer any six questions.

23. Find
$$\int_{C} \frac{e^{z} + \sin z}{z} dz$$
 where C is the circle $|z-2| = 3$.

- 24. If f is analytic in a domain D, show that all its derivatives f', f''..... exist and are analytic in D.
- 25. Evaluate $\int_{|z|=3} \frac{z^2+5}{(z-2)^2} dz$.
- 26. State and prove ratio test.

T – 1607

- 27. Find the first five terms of the Maclaurin's series for tanz.
- 28. If *R* is the radius of convergence of $\sum a_n z^n$ then what is the redii of convergence of $\sum a_n^2 z_n$ and $\sum a_n z^{2n}$.

SECTION - IV

- 29. Compute the residue at singularity of $f(z) = \frac{\cos z}{z^2(z-\pi)^3}$.
- 30. Find PV $\int_{-\infty}^{\infty} \frac{x \sin x}{(1+x^2)} dx.$

31. Evaluate $\int_{|z-1|=1} \frac{2z^2+z}{z^2+1} dz$ using Cauchy Residue theorem.

$$(6 \times 4 = 24 \text{ Marks})$$

Answer any two questions.

32. State and prove Cauchy's integral formula.

33. (a) State Picard's theorem and verify it for $e^{\frac{1}{z}}$ near z = 0.

(b) Explain zeroes and different types of singularities with examples.

34. (a) State and prove Cauchy Residue theorem.

(b) Using Cauchy Residue theorem, evaluate $\oint_{|z|=2} \frac{1-2z}{z(z-1)(z-3)} dz$.

35. Evaluate $\int_{0}^{\pi} \frac{d\theta}{2 - \cos\theta}.$

 $(2 \times 15 = 30 \text{ Marks})$

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

MM 1643 : ABSTRACT ALGEBRA : RING THEORY

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

SECTION - I

Answer **all** the first ten questions. Each carries **1** mark.

1. Give a proper nontrivial subring of Z_8 .

2. Give an example for an integral domain.

- 3. Let A be a subring of ring R. If $r \in R$, $a \in A$ implies $ra \in A$ then A is called
- 4. Give an example for a ring *R* and subring of it that is not an ideal.

5. Define ring homomorphism.

- 6. Which is true: *Z* homomorphic to Z_n or *Z* isomorphic to Z_n ?
- 7. State the division algorithm for F[x] where F is a field.
- 8. Define associates in an integral domain.

P.T.O.

T – 1608

9. Define Euclidean Domain.

10. In what type of integral domain, irreducibles and primes are the same?

$$(10 \times 1 = 10 \text{ Marks})$$

SECTION - II

Answer any eight questions. Each carries 2 marks.

- 11. Show that in a ring R, if $a, b \in R$, then a, 0 = 0 and a(-b) = (-ab).
- 12. Show that left (multiplicative) cancellation holds in an integral domain.
- 13. What is meant by an ideal generated by a_1, a_2, \dots, a_n in a ring *R*? Find ideal generated by x^2 in *Z* [*x*].
- 14. If A and B are ideals in a ring R, show that A + B is an ideal.
- 15. If *R* is a commutative ring with characteristic 2, show that $a \rightarrow a^2$ is a homomorphism on *R*.
- 16. If rings R, S are isomorphic, show that R[x] and S[x] are isomorphic.
- 17. Is $a + ib \rightarrow |a + ib| a$ homomorphism from the set of all complex numbers C to C? Justify.
- 18. Is $x^2 + 1$ irreducible over Z_3 ? Justify.
- 19. Define a unique factorization domain. Give an example.
- 20. Show that if *F* is a field, then F[x] is a Euclidean domain.
- 21. On an integral domain *D*, define $a \sim b$ if *a* and *b* are associates. Show that this is an equivalence relation on *D*.
- 22. Give two factorizations of 21 in $Z\left[\sqrt{-5}\right]$.

 $(8 \times 2 = 16 \text{ Marks})$

T – 1608

2

SECTION - III

Answer any **six** questions. Each carries **4** marks.

- 23. Show that every nonzero element of Z_n is either a unit or a zero divisor. Is this true for *Z*?
- 24. Show that if *R* is a ring with unity, then R/A is an integral domain if and only if A is a prime ideal.
- 25. Let $R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in Z \right\}$ and let *I* be a subset of *R* with even entries at all the places in its elements. Show that it is an ideal of R. Find out the elements in $\frac{R}{I}$.
- 26. Show that f(x) = 5x is a ring homomorphism from Z_4 to Z_{10} .
- 27. If D is an integral domain, prove that D [x] is also an integral domain.
- 28. Show that the product of two primitive polynomials is primitive.
- 29. Show that every Euclidean domain is a PID.
- 30. In a PID, show that every strictly increasing chain of ideals must be finite in length.
- 31. Show that the integral domain $Z\left[\sqrt{-5}\right]$ is not a UFD.

$(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any **two** questions. Each question carries **15** marks.

- 32. (a) If *R* is a commutative ring with unity, *A* an ideal in it, show that $\frac{R}{A}$ is a field if and only if *A* is maximal.
 - (b) Show that $\langle x \rangle$ is a prime ideal in Z[x], but not maximal.

T – 1608

- 33. (a) Describe the subrings of the ring of all integers.
 - (b) Which of these a prime ideals? Why?
 - (c) Let $a \in R$, a ring. Is $S = \{x \in R : ax = 0\}$ a subring? Is this an ideal? Justify your answers.
- 34. State and prove the theorem on unique factorization of nonzero, non unit elements in Z[x].
- 35. Prove that every PID is a UFD.

 $(2 \times 15 = 30 \text{ Marks})$

T - 1610

Reg. No. :

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Core Course XII

MM 1644 : LINEAR ALGEBRA

(2021 Admission)

Time : 3 Hours

Max. Marks : 80

SECTION – A

All the first ten questions are compulsory. Each question carries 1 mark.

- 1. Find the intersection of the lines x + y = 3 and x y = 1.
- 2. For which values of α , is there a whole line of solution for the following equation

 $\alpha x + 4y = 0$ $4x + 4\alpha y = 0$

3. If $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ then express *AB* as the linear combination of

columns of A.

4. Define Subspace of a vector space over a field F.

5. Find a basis for the vector space \mathbb{R}^3 over \mathbb{R} .

6. Find the null space of the matrix $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$.

7. Define the rank of a matrix.

8. Find the determinant of the matrix
$$\begin{bmatrix} -1 & 2 & 1 \\ 2 & -4 & -2 \\ 1 & 1 & 7 \end{bmatrix}$$

9. Find the Eigen values of $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$.

10. What is the relation between trace of a matrix and its Eigen values?

$(10 \times 1 = 10 \text{ Marks})$

SECTION – B

Answer any **eight** questions. Each question carries **2** marks.

11. Find the values of β such that the system,

 $2x - 6y = \beta$ -x + 3y = -4

- (a) Has no solution (b) Has infinite solution
- 12. Find two points on the line of intersection of the three planes t = 0 and z = 0 and x + y + z + t = 1 in four-dimensional space.
- 13. What are the elementary transformation in order to make the system
 x + 2y = 3
 3x + 5y = 8, an upper triangular system. Also write the transformed system and find the solution.
- 14. Is matrix multiplication commutative? Justify.

- 15. Let v_1, v_2, \dots, v_n are linearly independent vectors in a vector space V. Then, what is the dimension of the span of these vectors? If we add a vector v_{n+1} , where v_{n+1} is a linear combination of v_1, v_2, \dots, v_n , then what the change in the dimension of the span of these (n + 1) vectors?
- 16. Write down the 2 by 2 matrices *A* and *B* that have entries $a_{ij} = i + j$ and $b_{ij} = (-1)^{i+j}$ multiply them to find *AB* and |AB|.
- 17. Check whether the set $W = \{(x, y) \in \mathbb{R}^2 ; x + y = 1\}$ is a subspace of \mathbb{R}^2 or not?
- 18. Show that the columns of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ are linearly independent.
- 19. Using Crammers Rule solve $x_1 + 3x_2 = 0$, $2x_1 + 4x_2 = 6$.
- 20. Draw the triangle with vertices A = (0,0), B = (2,2), and C = (-1,3). Find its area.
- 21. Find the Eigen values of the matrix A and A^2 if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.
- 22. Give examples of A and B such that, A + B is not invertible although A and B are invertible.

$(8 \times 2 = 16 \text{ Marks})$

SECTION – C

Answer any six questions. Each question carries 4 marks.

23. Apply Elimination and back substitution to solve

$$x - 2y + z = 0; 2y - 8z = 8; -4x + 5y + 9z = -9$$

24. Prove that the eigenvalues of a triangular matrix are the entries on its main diagonal.

25. Find *L* and *U* such that LU = A; where $A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$.

26. The matrix that rotates the x - y plane by an angle θ is $A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

(a) Verify
$$A(\theta_1)A(\theta_2) = A(\theta_1 + \theta_2)$$

(b) Find
$$A(\theta)A(-\theta)$$

- 27. Find the reduced echelon form of $A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$. What is the rank?
- 28. Find the dimension and basis of subspaces
 - (a) column space and
 - (b) row space of the matrix $A = \begin{bmatrix} 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
- 29. Find the Eigen values of matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.
- 30. Let $u = [1, -2, -5]^T$, $v = [2, 5, 6]^T$ and $w = [7, 4, -3]^T$. Verify whether $\{u, v, w\}$ is independent or not if it is not independent, express w as the linear combination of u and v.
- 31. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map such that T(1,0) = (2,3), T(0,1) = (1,4). Find T.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

32. (a) Under what condition on b_1, b_2, b_3 is the following system solvable? Include *b* as a fourth column in [*A b*]. Find all solutions when that condition holds :

 $x + 2y - 2z = b_1$ $2x + 5y - 4z = b_2$ $4x + 9y - 8z = b_3$

(b) What conditions on b_1, b_2, b_3, b_4 make the following system solvable? Find x in that case.

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 2 & 5 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

- 33. Diagonalize the following matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$.
- 34. Reduce A to U and find det A = product of the pivots if

(a) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix}$

- 35. (a) Show that $S = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ form a basis for \mathbb{R}^3 .
 - (b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (2y + z, x 4y, 3x)
 - (i) Show that T is Linear
 - (ii) Find the null space of T (Kernel of T)

(2 × 15 = 30 Marks)

(Pages:4)

Reg.	No.	:	•••••••	
Nom	. .			

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Core Course XIII

MM 1645 : INTEGRAL TRANSFORMS

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. Find $\mathcal{L}{te^{2t}}$.
- 2. Find $\mathcal{L}\{\sin t \cos t\}$.
- 3. If $\mathcal{L}{f(t)} = F(s)$, then find $\mathcal{L}{tf(t)}$.
- 4. Write the second shifting property of Laplace transform.
- 5. Find $\mathcal{L}^{-1}\left\{\frac{2+s}{s^2+1}\right\}$.
- 6. Find the period of $f(x) = \cos 2x$.
- 7. Write an example for even function.

8. Write the Fourier series expansion of an even periodic function with period 2π .

9. Write the Fourier sine transform of e^{-ax} , a > 0.

10. Define Fourier transform of a function f(x).

(10 × 1 = 10 Marks)

Answer any eight questions. These question carries 2 marks each.

11. Using Definition, find Laplace transform of f(t) = t.

- 12. Find \mathcal{L} {sinh t + 3cos 2t + te^{t} }.
- 13. State property : Laplace Transform of derivative of a function. Hence write the Laplace transform of second derivative F''(t) of f(t).

SECTION - II

- 14. Find $\mathcal{L}^{-1}\left\{\frac{1}{(s-2)(s-1)}\right\}$.
- 15. Using the concept of Laplace transform find $\int e^{-2t} t \cos t dt$.
- 16. Using the Laplace transform of integral, find $\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+w^2)}\right\}$.
- 17. Write second shifting theorem of Laplace transform.
- 18. Find Fourier series of the function f(x) = x; $-\pi < x < \pi$.
- 19. Write the Fourier series expansion of a 2T periodic function defined in (-T, T).

20. Find Fourier cosine series of $f(x) = e^{2x}$; 0 < x < 1.

21. Find Fourier cosine transform of $f(x) = \begin{cases} k ; 0 < x < a \\ 0; x > a \end{cases}$

22. Show that $\mathcal{F}_{C}\{f'(x)\} = w \mathcal{F}_{S}\{f(x)\} - \sqrt{\frac{2}{\pi}}f(0)$.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any **six** questions. These questions carry **4** marks each.

- 23. Define Dirac's Delta function and find its Laplace transform.
- 24. State and prove first shifting theorem of Laplace Transform.
- 25. Using Laplace transform, solve the differential equation y'' + 4y = 4t, y(0) = 1 and y'(0) = 5.
- 26. Using Laplace transform solve the integral equation $y(x) = x^3 + \int \sin(x-t)y(t)dt$.
- 27. Evaluate $\mathcal{L}^{-1}\left\{\frac{s}{(s^2+1)^2}\right\}$, using convolution property.
- 28. Represent function $f(x) = \begin{cases} -1 \text{ for } -\pi < x < 0 \\ 0 \text{ for } x = 0 \\ 1 \text{ for } 0 < x < \pi \end{cases}$ as a Fourier series.
- 29. Find Fourier integral representation of function of $f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$
- 30. Find the Fourier Transform of f(x) = 1 if |x| < 1 and f(x) = 0 otherwise.
- 31. Show that : $\mathcal{F} \{f'(x)\} = iw \mathcal{F} \{f(x)\}$, where $f(x) \to 0$ as $|x| \to \infty$ and f'(x) is absolutely integrable over *x*.

$$(6 \times 4 = 24 \text{ Marks})$$

T - 1611

SECTION – IV

Answer any two questions. These question carries 15 marks each.

32. Find

(a)
$$\mathcal{L}\left\{f(t)\right\}$$
 if $f(t) = \begin{cases} 1, 0 < t < \pi \\ 0, \pi < t < 2\pi \\ \sin t, t > 2\pi \end{cases}$
(b) $\mathcal{L}\left\{\frac{\sin t}{t}\right\}$

(c)
$$\mathcal{L}^{-1}\left\{\ln\frac{s+a}{s+b}\right\}$$

- 33. (a) Deduce a formula to calculate the Laplace transform of the n^{th} derivative $f^n(t)$ of a function f(t).
 - (b) Using Laplace transform solve the system of differential equations

 $y'_1 + y_2 = 1$ and $y'_2 - y_1 + 4e' = 0$ given $y_1(0) = 0$, $y_2(0) = 0$.

34. Find half range Fourier sine and cosine series of $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x)\text{if } \frac{L}{2} < x < L \end{cases}$

35. Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\cos \frac{\pi \omega}{2}}{1 - \omega^{2}} \cos \omega x$ $d\omega = \begin{cases} \frac{\pi}{2} \cos x; |x| \le \frac{\pi}{2} \\ 0 ; |x| > \frac{\pi}{2} \end{cases}.$ (2 × 15 = 30 Marks)

T – 1611

Reg. No	D. :	 	
Name :		 	

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Elective Course

MM 1661.1 : GRAPH THEORY

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

T - 1612

SECTION - I

All the first **ten** questions are compulsory

They carry 1 mark each.

1. What is an isolated vertex?

2. Define a complete graph.

3. State first theorem of graph theory.

4. Define trail.

5. Draw a tree with five vertices.

6. A graph G is called Hamiltonian if —

7. State travelling salesman problem.

8. State Euler's formula for plane graphs.

9. Define degree of a face of a plane graph.

10. Give an example of an Eulerian graph.

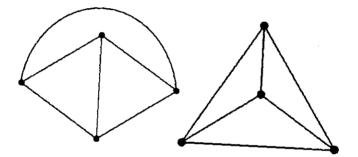
$(10 \times 1 = 10 \text{ Marks})$

SECTION - II

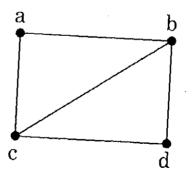
Answer any eight questions

These questions carry 2 marks each.

- 11. Draw K₄.
- 12. Prove that in a tree, there is precisely one path between two distinct vertices.
- 13. Prove that if G is a tree with n vertices, then G is an acyclic graph with (n-1) edges.
- 14. Show that the following two graphs ate isomorphic:



- 15. Define k-regular graph and draw a 2-regular graph.
- 16. Show that in the following graph, sum of degrees of vertices is even.



- 17. Prove that if a connected graph G is Euler, then the degree of every vertex is even.
- 18. Prove that a simple graph G is Hamiltonian if and only if its closure c(G) is Hamiltonian.
- 19. Prove that redrawings of the same planar graph have same number of faces.

20. Explain travelling salesman problem.

21. Draw a planar graph and show that it's subgraphs are also planar.

22. State Kuratowski's theorem.

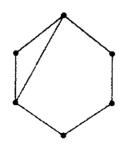
 $(8 \times 2 = 16 \text{ Marks})$

SECTION – III

Answer any **six** questions

These questions carry **4** marks each.

- 23. Define graph isomorphism and give two isomorphic graphs with four vertices.
- 24. What is a spanning subgraph? Draw a spanning subgraph of K_4 .
- 25. Prove that any tree with at least two vertices has more than one vertex of degree one.
- 26. Prove that a connected graph is a tree if and only if every edge is a bridge.
- 27. Prove that if a simple graph with at least three vertices is 2-connected if for each pair of distinct vertices u and v of G, there are two internally disjoint u-v paths in G.
- 28. Explain Chinese Postman problem.
- 29. Draw a Hamiltonian graph with six vertices.
- 30. Show that $K_{3,3}$ is non-planar.
- 31. Draw the closure of the following graph:



 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any **two** questions

These questions carry 15 marks each.

- 32. Prove that a graph G is connected if and only if it has a spanning tree.
- 33. Prove that a tree with n vertices has precisely (*n*-1) edges.
- 34. Prove that a connected graph *G* is Euler if and only if degree of every vertex of *G* is even.
- 35. Prove that if G is a connected plane graph and let n, e and f denote the number of vertices, edges and faces of G respectively, then n-e + f=2.

 $(2 \times 15 = 30 \text{ Marks})$

Reg. No. :

Name :

Sixth Semester B.Sc. Degree Examination, April 2024

First Degree Programme under CBCSS

Mathematics

Core Course IX

MM 1641 : REAL ANALYSIS - II

(2018 Admission Onwards)

Time : 3 Hours

Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1. State composition of continuous functions theorem.
- 2. State extreme value theorem for continuous functions.
- 3. Define uniform continuity and give an example.
- 4. State intermediate value theorem.
- 5. Find the 10th derivative of $f(x) = x^5 + 4x^2 + 1$.
- 6. Give an example of a monotone function.
- 7. When we say that a function is Riemann integrable.
- 8. Give an example of a set of measure 0.

9. If
$$\int_{a}^{b} f = 10$$
, then $\int_{b}^{a} f = \cdots$.

10. State Lebesgue's Theorem.

(10 × 1 = 10 Marks)

SECTION - II

Answer any eight questions. These questions carry 2 marks each.

- 11. State sequential criterion for functional limits.
- 12. Evaluate $\lim_{x \to \pi} (x + \sin x)$.
- 13. Construct two functions f and g, neither of which is continuous at 0 but f(x)+g(x) is continuous at 0.
- 14. Whether there exists a continuous function defined on a closed interval with range equal to {1,2,3}.
- 15. Define Lipschitz Function and give an example of a function which is uniformly continuous but not Lipschitz.
- 16. Define removable discontinuity with an example.
- 17. State Darboux's Theorem.
- 18. State Mean Value Theorem.

19. Find
$$\lim_{x \to 1} \left(\frac{1-x}{\ln x} \right)$$
.

20. If P_1 and P_2 are any two partitions of [a, b], then prove that $L(f, P_1) \le U(f, P_2)$.

21. Distinguish between upper integral and lower integral.

22. If
$$\int_{1}^{4} f = 4$$
 and $\int_{2}^{4} f = 1$, then find $\int_{1}^{2} f$.

 $(8 \times 2 = 16 \text{ Marks})$

Answer any **six** questions. These questions carry **4** marks each.

- 23. Using $\varepsilon \delta$ definition prove that $\lim_{x \to 2} (3x + 4) = 10$.
- 24. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0,\infty)$.
- 25. Is the converse of intermediate value theorem true? Justify your claim.
- 26. Let *f* be differentiable on an open interval (*a*, *b*). If *f* attains a maximum value at some point $c \in (a, b)$ then prove that f'(c) = 0.
- 27. State and prove Rolle's theorem.
- 28. If $f : A \rightarrow R$ is differentiable at a point $c \in A$, then prove that *f* is continuous at *c*. Is the converse true? Justify your answer.
- 29. If $g: A \to R$ is differentiable on an interval A and satisfies g'(x) = 0 for all $x \in A$, then prove that g(x) = k for some constant $k \in R$.
- 30. Assume that $f_n \to f$ uniformly on [a, b] and that each f_n is integrable. Prove that f is integrable and $\lim_{n \to \infty} \int_a^b f_n = \int_a^b f$.
- 31. Prove that the Dirichlet's function $g(x) = \begin{cases} 1 \text{ for } x \text{ rational} \\ 0 \text{ for } x \text{ irrational} \end{cases}$ is not integrable.

 $(6 \times 4 = 24 \text{ Marks})$

T – 1605

SECTION - IV

Answer any two questions. These questions carry 15 marks each.

- 32. Let $f: A \rightarrow R$ be continuous on A. If $K \subseteq A$ is compact, then prove that f(K) is also compact.
- 33. State and prove chain rule for derivatives.
- 34. (a) Prove that a bounded function *f* is integrable on [*a*, *b*] if and only if, for every $\varepsilon > 0$, there exists a partition P_{ε} of [*a*, *b*] such that $U(f, P_{\varepsilon}) L(f, P_{\varepsilon}) < \varepsilon$.
 - (b) Prove that if *f* is continuous on [*a*, *b*], then it is integrable.
- 35. State and prove the fundamental theorem of integral calculus.

(2 × 15 = 30 Marks)